devilish allure of the magical juice

By admin

The Devilish Allure of the Magical Juice Alcohol, often referred to as the magical juice, has a devilish allure that has captivated humans for centuries. It possesses the power to transform moods, ease anxieties, and create a sense of euphoria. Yet, beneath its enchanting allure lies a dark side that can lead to addiction, health problems, and destructive behavior. The main idea of this note is the devilish allure of alcohol, which has been captivating humans for centuries..


Photo Credit: Bart Heird (chicagobart/Flickr) The Taste of Carbonation Sour-sensing taste receptors specifically express a gene which encodes carbonic anhydrase 4, which is an enzyme that catalyzes the conversion of CO 2 to bicarbonate ions (HCO 3 ^- ) and free protons (H ^+ ). This enzyme is only attached on the surface of sour-sensing taste receptor cells, so when you eat Pop Rocks or drink carbonated soda, CO 2 is broken down and H ^+ proton byproducts linger outside of the cell. Since sour-sensing taste receptors activate in response to acidic environments. Therefore, they will detect this abundance of free H ^+ protons and ultimately, detect the taste of carbonation [3].

Photo Credit Bart Heird chicagobart Flickr The Taste of Carbonation Sour-sensing taste receptors specifically express a gene which encodes carbonic anhydrase 4, which is an enzyme that catalyzes the conversion of CO 2 to bicarbonate ions HCO 3 - and free protons H. Whether beheld by occult-minded scholars or by teenagers with a fascination for horror movies and black metal, to gaze upon the exotic, bizarre, and intimidating seals of the demons is to touch the truly infernal and, in some strange way, to feel the abyss staring back at you.

Devilish allure of the magical juice

.

Why Do 'Pop Rocks' Pop?

Photo Credit: Jamie (jamiesrabbits/Flickr) Some might say one of life's little pleasures is eating candy. Those who have tried Pop Rocks, however, know that its sugary glory and dare-devilish allure warrant an entirely new adventure. Although it appears harmless, a handful of Pop Rocks candy will set off a fizzy explosion of sugar crystals and popping noises in your mouth. But no remorse is needed; Pop Rocks aren't actually dangerous. ( Mythbusters proves your stomach won't explode.) How are Pop Rocks made? Pop Rocks were developed by scientist William A. Mitchell in 1956 with a technique patented in 1961 to create a revolutionary confection which “enclos[es] a gas within a solid matrix” [1, 2]. Essentially, Pop Rocks is made of a typical hard candy sugar solution (sucrose, lactose, corn syrup and flavoring) with the addition of one important ingredient:

highly-pressurized carbon dioxide (CO 2 )

. First, the sugar solution is heated and melted to obtain a “fusible sugar”. Pop Rocks, like most other hard candies, uses a sugar solution of sucrose, lactose, and corn syrup, because these ingredients produce candy with low hygroscopicity – which means the candy is less likely to absorb water from the surrounding atmosphere [2]. This ensures that the sweet morsels do not dissolve as easily in a humid environment; they are also less sticky and have a longer shelf life. Just as CO 2 transforms syrupy juice into soda, it will turn ordinary candy into Pop Rocks! The way this works: CO 2 at 600 pounds per square inch (psi) is mixed with the melted sugar until there is about 0.5 to 15 ml of gas per gram of sugar [1, 2]. Note that 600 psi is roughly 7 times greater than the pressure inside a champagne bottle , 20 times greater the pressure in your car tires, and 40 times greater than normal atmospheric pressure at sea level [5, 6].

Photo Credit: Spiff (Wikimedia Commons) Once the CO 2 is thoroughly incorporated, a process which takes anywhere from 2-6 minutes [2], the mixture is cooled and the candy hardens. Cooling is done as rapidly as possible to prevent CO 2 from diffusing out of the candy, reduce hygroscopicity, and minimize crystallization, a process which makes the candy very fragile. [2] This causes the Pop Rocks to shatter and gives the candy's signature appearance, “mini rocks” of sugar crystals. The result? Small candy pieces encapsulating bubbles of high-pressure CO 2 . Lo, the magic of carbonation!

Photo Credit: Evan Amos (Wikimedia Commons) So why do Pop Rocks pop? When you eat Pop Rocks, the moisture and temperature in your mouth melts the candy. The subsequent popping sounds are a result of the high-pressure CO 2 bubbles being released into atmospheric pressure! But what about the crackling sensations felt in your mouth? Why do we perceive carbonation as a fizzy, tingling flavor sensation? In the past few years, scientists have identified that taste receptor cells can actually detect and respond to carbonation. Specifically, sour-sensing taste receptor cells are activated in response to CO 2 and are responsible for the “taste of carbonation” [3].

Photo Credit: Bart Heird (chicagobart/Flickr) The Taste of Carbonation Sour-sensing taste receptors specifically express a gene which encodes carbonic anhydrase 4, which is an enzyme that catalyzes the conversion of CO 2 to bicarbonate ions (HCO 3 ^- ) and free protons (H ^+ ). This enzyme is only attached on the surface of sour-sensing taste receptor cells, so when you eat Pop Rocks or drink carbonated soda, CO 2 is broken down and H ^+ proton byproducts linger outside of the cell. Since sour-sensing taste receptors activate in response to acidic environments. Therefore, they will detect this abundance of free H ^+ protons and ultimately, detect the taste of carbonation [3].

(A) CO 2 is broken down into HCO 3 ^- and H ^+ by the carbonic anhydrase 4 enzyme (B) The abundance of H ^+ byproducts creates an acidic environment. Through ion channels, the H ^+ ions enter the sour-taste receptor, which depolarizes the cell and leads to the detection of CO 2 . However, carbonation doesn't always taste sour to us because CO 2 is detected by multiple somatosensory systems in the body. Some researchers even suggest that the tingling, burning sensations associated with the perception of carbonation can be caused by CO 2 triggering pain receptors [4]. Would this mean our society's desire for carbonated food and drink has strangely evolved against a natural aversion to experiencing pain? Personally, I can't hear over the loud buzzing noises of Pop Rocks in my mouth to find out. and as they say, “no pain, no gain”! Note: Modified on September 19, 2014 The diagram illustrating taste detection of carbonation has been added in the current post. References cited

  1. "Why do Pop Rocks pop?” http://www.poprockscandy.com/history.html . Accessed 23 August 2014.
  2. Leon K, Mitchell W (1961) Gasified confection and method of making the same. US Patent No. US3012893 A. Available: http://www.google.com/patents/US3012893 . Accessed 20 August 2014.
  3. Chandrashekar J, Yarmolinsky D, von Buchholtz L, Oka Y, Sly W, et al. (2009) The Taste of Carbonation. Science 326: (5951) 443-445. doi:10.1126/science.1174601. Available: http://www.sciencemag.org/content/326/5951/443.full . Accessed 25 August 2014.
  4. Marziali C (2010) “Sparkling Drinks Spark Pain Circuits”. University of Southern California. http://dornsife.usc.edu/news/stories/796/sparkling-drinks-spark-pain-circuits/ . Accessed 26 August 2014.
  5. “Champagne FAQ’s” http://www.champagnesabering.com/home.php?id=16. Accessed 16 September 2014.
  6. “How To Check Tire Pressure” http://www.dmv.org/how-to-guides/check-tire-pressure.php. Accessed 16 September 2014.

Eunice Liu is studying Neuroscience and Linguistics at UCLA. She attributes her love of food science to an obsession with watching bread rise in the oven. Read more by Eunice Liu

Photo Credit: Spiff (Wikimedia Commons) Once the CO 2 is thoroughly incorporated, a process which takes anywhere from 2-6 minutes [2], the mixture is cooled and the candy hardens. Cooling is done as rapidly as possible to prevent CO 2 from diffusing out of the candy, reduce hygroscopicity, and minimize crystallization, a process which makes the candy very fragile. [2] This causes the Pop Rocks to shatter and gives the candy's signature appearance, “mini rocks” of sugar crystals. The result? Small candy pieces encapsulating bubbles of high-pressure CO 2 . Lo, the magic of carbonation!
Devilish allure of the magical juice

.

Reviews for "devilish allure of the magical juice"

1. Sarah - 1/5 Stars - I was really excited to try "Devilish allure of the magical juice" based on the hype surrounding it, but I was extremely disappointed. The taste was way too artificial and overly sweet for my liking. It felt like I was drinking syrup mixed with food coloring rather than a refreshing beverage. Additionally, I didn't feel any of the promised magical allure as advertised. Overall, a major letdown and not something I would recommend.
2. John - 2/5 Stars - I had high hopes for "Devilish allure of the magical juice" but unfortunately, it didn't live up to the expectations. The flavor was okay, but it didn't have the unique and enchanting taste that was promised. It just tasted like a regular generic fruit punch, nothing special. The price was also quite steep for such an ordinary drink. I wouldn't bother trying it again as there are better alternatives out there.
3. Emily - 1/5 Stars - What a disappointing drink! "Devilish allure of the magical juice" promised an otherworldly experience, but all I got was a sickly sweet liquid. The artificial flavors were overpowering, making it almost undrinkable. It left a weird aftertaste in my mouth that lingered for hours. I couldn't detect any magical allure in this beverage. Don't waste your money on this overly hyped and underwhelming drink.

devilish allure of the magical juice

devilish allure of the magical juice